火焰原子吸收光谱法连续测定茶叶中的钙镁

发布时间 : 2020-12-04
钙和花茶 茶叶中 茶叶中的提神成分

【www.cy316.com - 钙和花茶】

摘 要 本文用火焰原子吸收光谱法连续测定茶叶中的钙、镁。方法简单、快速,具有良好的精密度和准确度,相对标准偏差1.87%~2.75%,回收率92.5%~105.1%。

主题词 火焰原子吸收光谱法, 茶叶, 钙, 镁

Continuous Determination of Ca and Mg in Tea by

Flame Atmic Absorption Spectrophotometry

Ge MA and Jingyan ZHANG

Department of Applied Chemistry,Changchun College of Technology,130021 Changchun

Abstract In this paper the Ca and Mg in tea were detected using continuous determination by FAAS.The method is simple,rapid and has good precision and accuracy.The relative standard deviation is 1.87%―2.75%.The recovery rate is 92.5%―105.1%.

Keywords Flame atomic absorption spectrophotometry, Tea, Calcium, Magnesium

茶叶作为饮料在我国有着悠久的历史,也是世界性的三大饮料之一。它丰富而复杂的化学成分赋予了茶叶具有良好的保健功能[1]。因而本文对茶叶中钙镁的测定具有实际意义。方法简单、快速和准确,得到满意的分析结果。

1 实验部分

1.1 仪器与试剂

AAS 9502C型原子吸收分光光度计,钙、镁空心阴极灯。

Ca标准贮备液:称取2.497 0 g碳酸钙溶于水,移入1 000 mL容量瓶中,加盐酸10 mL,稀释至刻度。钙的浓度为1 mg/mL。

Mg标准贮备液:称取1.658 3 g于800 ℃灼烧至恒重的氧化镁溶于2.5 mL盐酸及少量水中,用水稀释至1 000 mL。镁的浓度为1 mg/mL。

硝酸(优级纯)。镧盐溶液:5 %。所用试剂为优级纯或光谱纯。水为去离子水。

1.2 仪器工作条件

实验选定最佳条件见表1。

Tab.1 Instrumental operating conditions

元素分析线

/nm灯电流

/mA光谱通

带/nm燃烧器

高度/mm燃助比

乙炔/空气/(L/h)Ca422.740.41250/320Mg*285.230.4550/320

*Mg含量高,可适当偏转燃烧器。

1.3 分析方法

准确称取烘干、研碎后的茶叶0.100 0 g于100 mL烧杯中,加硝酸5~8 mL,盖上表面皿,放置过夜[2]。在电热板上蒸至近干,冷却,移入15 mL容量瓶中,加入镧盐溶液(5%)1.00 mL和硝酸(10%)1.5 mL,稀释至刻度,摇匀待测。

在6个50 mL容量瓶中,分别加入Ca标准贮备液0.00、0.50、1.00、1.50、2.00、2.50 mL和Mg标准贮备液0.00、0.50、1.00、1.25、1.50、1.75 mL,再加入镧盐溶液

cy316.com扩展阅读

电感耦合等离子发射光谱法同时测定茶叶中的七


分类号:O657.31 文献标识码:B

文章编号:1004―8456(2000)01―0012 ―03▲

茶叶中微量元素的测定比较常见的有分光光度法,原子吸收光谱法和离子选择电极法等, [1]这些方法往往灵敏度较低,对于多元素的测定需要几种方法联用、费时费力。本文采用电感耦合等离子发射光谱法(ICP)同时测定了茶叶中的七种微量元素,具有灵敏度高、线性范围宽、元素之间相互干扰少,稳定性好等优点。分析速度快、多种元素同时测定只需 1 min左右,方法的相对标准偏差小于2.6%。

1 材料与方法

1.1 仪器 ICP-61型发射光谱仪(美国热电公司产,带有IBM微机控制。功率:1.1 kw;Ar冷却气:15L/min;Ar载气:0.6 L/min;观察高度:16 mm;狭缝宽度:20 μm ;被测元素波长:Mg 279.5 nm,Ca 317.9 nm,Fe 259.9 nm,Cu 324.7 nm,Zn 213.8 nm,Ni 231.6 nm,Sr 407.7 nm。内标元素波长:Cd 228.8 nm。

1.2 试剂 盐酸(GR)、硝酸(GR)。

标准储备液 称取光谱纯镁、铁、铜、锌、镉各1.00 g,分别用30 mL 1+1盐酸加热溶解定容至1 000 mL,此溶液中各元素浓度为1.00 mg/mL。在50 mL水中加入20 mL盐酸(GR)溶解2.498 g碳酸钙(GR),定容至1 000 mL,此 溶液钙浓度为1.00 mg/mL。称取光谱纯镍粉1.00 g,溶于少量硝酸(GR)加热蒸至近干,用少 量硝酸(GR)将残液全量转移至1 000 mL容量瓶中并稀释至刻度,此溶液镍浓度为1.00 mg/mL 。称取2.415 g硝酸锶(光谱纯)溶于少量硝酸(0.2 mol/L稀释至1 000 mL容量瓶中,此溶液 锶浓度为1.00 mg/mL。

标准应用液 吸取上述储备液各10.00 mL置于1 000 mL容量瓶中加水稀释至刻度,此溶液中 各元素的浓度均为10 μg/mL。

试验用水 本试验用水全部采用蒸馏水经两次离子交换树脂交换后的去离子水。

1.3 校正曲线的绘制 以去离子水溶液(含内标物Cd,其浓度为10 μg/mL )为低标,以10 μg/mL各元素混合物标准液(标准应用液)为高标,调仪器的冲洗时间为60 s ,曝光积分时间5 s,曝光3次,上机分析低标和高标。绘出各元素的强度对浓度值的校正曲 线,并于微机内储存。

1.4 试样的前处理及分析 取1.0 g茶叶于高压密封消化罐中,加入10 mL 硝酸(GR)浸泡1 d,在烤箱中140℃温度下加热消化4 h,冷却后将消化液转移到50 mL小烧 杯中蒸发至近干,移入25 mL试管,用微量注射器加入1.00 mg/mL Cd标准液250 μL,加水 至刻度混匀。以与校正曲线相同的仪器条件上机分析,并将校正因子改为25。分析后微机自 动打印分析结果。

2 结果与讨论

2.1 前处理方法筛选 我们选择了4种茶叶(红楼花茶、津福花茶、宁红保健茶、龙诞甜茶)作为试样,分别用(1)高压密封消化罐消化;(2)20%硝酸浸泡;(3)3%硝酸浸泡。3 种方法消化后,分别上机测定,结果表明:用高压密封消化罐消化方法最好,其他两种消化 方法的测定值只相当于高压消化罐消化法的50%~80%左右。以红楼花茶的测定结果为例,见表1。

表1 3种消化方法的测定结果比较

mg/kg

消化方法MgCaFeCuZnNiSr高压消化罐1453301414115.332.53.1813.720%硝酸浸泡1216250211712.726.02.6011.43%硝酸浸泡1133217510111.02.342.229.89

2.2 检出限及线性范围 本方法同时测定

电感耦合等离子发射光谱法同时测定茶叶中的七种微量元素


文章编号:1004—8456(2000)01—0012 —03▲

茶叶中微量元素的测定比较常见的有分光光度法,原子吸收光谱法和离子选择电极法等, [1]这些方法往往灵敏度较低,对于多元素的测定需要几种方法联用、费时费力。本文采用电感耦合等离子发射光谱法(ICP)同时测定了茶叶中的七种微量元素,具有灵敏度高、线性范围宽、元素之间相互干扰少,稳定性好等优点。分析速度快、多种元素同时测定只需 1 min左右,方法的相对标准偏差小于2.6%。

1 材料与方法

1.1 仪器 ICP-61型发射光谱仪(美国热电公司产,带有IBM微机控制。功率:1.1 kw;Ar冷却气:15L/min;Ar载气:0.6 L/min;观察高度:16 mm;狭缝宽度:20 μm ;被测元素波长:Mg 279.5 nm,Ca 317.9 nm,Fe 259.9 nm,Cu 324.7 nm,Zn 213.8 nm,Ni 231.6 nm,Sr 407.7 nm。内标元素波长:Cd 228.8 nm。

1.2 试剂 盐酸(GR)、硝酸(GR)。

标准储备液 称取光谱纯镁、铁、铜、锌、镉各1.00 g,分别用30 mL 1+1盐酸加热溶解定容至1 000 mL,此溶液中各元素浓度为1.00 mg/mL。在50 mL水中加入20 mL盐酸(GR)溶解2.498 g碳酸钙(GR),定容至1 000 mL,此 溶液钙浓度为1.00 mg/mL。称取光谱纯镍粉1.00 g,溶于少量硝酸(GR)加热蒸至近干,用少 量硝酸(GR)将残液全量转移至1 000 mL容量瓶中并稀释至刻度,此溶液镍浓度为1.00 mg/mL 。称取2.415 g硝酸锶(光谱纯)溶于少量硝酸(0.2 mol/L稀释至1 000 mL容量瓶中,此溶液 锶浓度为1.00 mg/mL。

标准应用液 吸取上述储备液各10.00 mL置于1 000 mL容量瓶中加水稀释至刻度,此溶液中 各元素的浓度均为10 μg/mL。

试验用水 本试验用水全部采用蒸馏水经两次离子交换树脂交换后的去离子水。

1.3 校正曲线的绘制 以去离子水溶液(含内标物Cd,其浓度为10 μg/mL )为低标,以10 μg/mL各元素混合物标准液(标准应用液)为高标,调仪器的冲洗时间为60 s ,曝光积分时间5 s,曝光3次,上机分析低标和高标。绘出各元素的强度对浓度值的校正曲 线,并于微机内储存。

1.4 试样的前处理及分析 取1.0 g茶叶于高压密封消化罐中,加入10 mL 硝酸(GR)浸泡1 d,在烤箱中140℃温度下加热消化4 h,冷却后将消化液转移到50 mL小烧 杯中蒸发至近干,移入25 mL试管,用微量注射器加入1.00 mg/mL Cd标准液250 μL,加水 至刻度混匀。以与校正曲线相同的仪器条件上机分析,并将校正因子改为25。分析后微机自 动打印分析结果。

2 结果与讨论

2.1 前处理方法筛选 我们选择了4种茶叶(红楼花茶、津福花茶、宁红保健茶、龙诞甜茶)作为试样,分别用(1)高压密封消化罐消化;(2)20%硝酸浸泡;(3)3%硝酸浸泡。3 种方法消化后,分别上机测定,结果表明:用高压密封消化罐消化方法最好,其他两种消化 方法的测定值只相当于高压消化罐消化法的50%~80%左右。以红楼花茶的测定结果为例,见表1。

表1 3种消化方法的测定结果比较

mg/kg

消化方法MgCaFeCuZnNiSr高压消化罐1453301414115.332.53.1813.720%硝酸浸泡1216250211712.726.02.6011.43%硝酸浸泡1133217510111.02.342.229.89

2.2 检出限及线性范围 本方法同时测定每个元素的10次空白强 度的标准偏差s和校正曲线的斜率系数A,根据公式DL=3sA计算出最小检出限:钙0.001 mg/kg、镁0.0001 mg/kg、铁0.000 5 mg /kg、铜0.0002 mg/kg、锌0.0004 mg/kg、镍0.001 mg/kg、锶0.0001 mg/kg。曲线线性范围 宽是等离子发射光谱的最大特点,在以下浓度范围内曲线具有良好的线性关系 。钙<1 000 mg/L、镁<50 mg/L、铁<200 mg/L、铜<200 mg/L、锌<150 mg/L、镍 <200 mg/L、锶<100 mg/L。

2.3 精密度试验 将同一试样的消化液分成6份,每天测定1份,连续测定 6 d,测定结果见表2。

表2 精密度试验(n=6)

mg/kg

元素红楼花茶宁红保健茶龙诞甜茶

RSD %)

RSD %)RSD %Mg14450.74616040.73624500.88Ca29720.78944821.4664040.97Fe140.30.669614.21.10960.60.69Cu15.612.6920.282.3322.771.74Zn32.361.1838.290.84638.260.827Ni3.263.894.267.113.888.3Sr13.960.7822.521.3634.472.1<

钙指示剂示波极谱法测定茶叶中铝


梁朝河 王定国 陈大明 罗水斌 张玉华

铝对人体的危害作用,已日益为人们所关注。食用含铝较高的食品,将会对

人体健康产生不良影响。茶叶是富铝植物,研究茶叶中的铝含量测定方法很有必

要。目前,测定铝一般都采用原子吸收的石墨炉法、荧光光度法和比色法,极谱

法已有文献报道[1~3]。本文提出在pH 3.6的乙酸-乙酸铵缓冲溶液2-羟基(2-羟

基-4-磺酸-1-重氮萘)-3萘酸(简称钙指示剂)中,进行示波极谱法测定茶叶中的

铝。在10 ml试液中,铝含量为0.05~4.0 μg时,波高与铝含量呈线性关系

(r=0.999 8)。方法灵敏、简便、快速,回收率90%~106%,相对标准偏差(RSD)

6.6%~2.0%。

一、实验部分

1.仪器和试剂:JP-2型示波极谱仪(成都仪器厂);pH计(上海第二分析仪器厂)

;乙酸-乙酸铵缓冲溶液:取30 ml冰乙酸溶于400 ml纯水中,在pH计上用1 mol/L氨

水调节pH值至3.6,并定容至500 ml;0.1%钙指示剂溶液:称取0.1 g钙指示剂加少

量的0.2 mol/L氢氧化钠溶液溶解,加20 ml乙酸-乙酸铵缓冲溶液,再加纯水定容

至100 ml;铝标准溶液:准确称取1.000 0 g高纯金属铝,加入25 ml盐酸溶解,用

纯水定容至1 000 ml,此溶液1.00 ml含1.00 mg铝,用时逐级稀释成1.00 ml含

1.0 μg铝;硝酸、高氯酸为优级纯,冰乙酸,氨水为分析纯;纯水为去离子重蒸馏

水。

2.样品的预处理:将茶叶样品制成粉末,准确称取一定量(约0.1 g),置于50ml

定氮瓶中,加少量水润湿,加5 ml硝酸和1 ml高氯酸,在600 W电炉上加热消化,

试样消化至无色、透明、冒白烟(勿烧干),停止加热,冷却后加5 ml纯水,继续加

热至冒白烟,连续两次,以除去剩余的硝酸。用纯水将消化液转入100 ml容量瓶中,

定容至刻度,混匀,供测试用。同时作试剂空白。

3.样品分析:取上述样品消化稀释液1.00 ml于10 ml具塞比色管中;另取6支比

色管,各加1.00 ml试剂空白稀释液,再分别加铝标准0、0.50、0.75、1.00、1.25、

1.50 μg,向试样管及标准管各加2.0 ml乙酸-乙酸铵缓冲溶液,0.2 ml 0.1%钙指示

剂,用纯水定容至10 ml,混匀。置沸水浴中加热5分钟,取出冷至室温。转入10 ml

烧杯中,三电极系统(DME?SCE?Pt),于起始电位-0.2 V,作阴极化二次导数扫描,在

-0.46 V处测量峰电流。采用直接比较法计算结果。

4.结果计算:cx=(hx-ho)/(hs-ho)×cs×(100)/(W×1 000)

式中:cx―茶叶中铝含量(mg/g),hx―样品波高(μA),hs―铝标准波高(μA),

ho―试剂空白波高(μA),cs―铝标准含量(μg),W―称取茶叶重量(g)。

二、结果与讨论

1.钙指示剂与铝络合物的极谱图(附图):在pH值3.6的乙酸-乙酸铵介质中,钙

指示剂在-0.22 V处出现一示波极谱峰P1,当加入铝后,于-0.46 V处出现一新的极

谱峰P2。随着铝量增加,P1波下降,P2波升高。两者能明显分开。

2.缓冲介质选择及pH值的影响:氯乙酸-乙酸钠和乙酸-乙酸钠缓冲体系中灵敏

度和峰形都较差;

<

相关文章