纳米黄茶的最新研究

发布时间 : 2019-11-13
派拉得纳巴德茶用糖果 各种茶的茶语 黑茶的茶意

派拉得纳巴德茶用糖果。

黄茶是我国特产茶类,生产历史悠久,唐朝时就成为贡品,但真正大量生产发展是一九五四年以后。黄茶按制茶原料老嫩分为黄小茶 (芽茶型 )和黄大茶。黄小茶主要有湖南的君山银针,北港毛尖、四川蒙顶黄芽、湖北远安的鹿苑茶、浙江平阳黄汤、安徽霍山黄芽等。黄大茶主要有安徽金寨、六安黄大茶、湖北英山黄大茶和广东大叶青茶。其基本制造方法都要经过杀青、堆闷(放),干燥三个过程。“堆闷(放)”是黄茶制造区别于绿茶制造的独特工序。“堆闷(放)”过程经湿热作用或微生物作用引起叶内物质的深刻酶促变化,为形成黄茶独特品质特征——“黄叶黄汤”奠定了物质基础。 黄茶在闷堆过程中微生物滋生是随闷堆时间延长而增加的,特别是酵母菌、黑曲酶、根酶等这几种微生物大量滋生,会给黄茶闷堆增加多种胞外酶,酵母菌大量滋生中能产生脂肪酶、蔗糖酶、乳糖酶等,这些酶类能分解大分子糖类物质和粗脂肪成为小分子物质醇、醛、有机酸、二氧化碳等。根酶能产生丰富的糖化淀粉酶,黑曲酶分解出蛋白酶、果胶酶,润滑脂分解蛋白质生成氨基酸、降解果胶物质。黑曲酶还能利用多种碳源,产生柠檬酸。黄茶在闷堆中胞外酶的作用能形成新的小分子糖类物质,氨基酸类物有机酸、醇类、醛类物质。 纳米黄茶所以制成纳米(一百~三百纳米)极细粉,一是为了破壁,释放全部精华;二是为了用冷水也能沏开,以保持黄茶酶的活性,提高黄茶的功能。 黄茶是沤茶,在沤的过程中,会产生大量的消化酶,对脾胃最有好处,消化不良,食欲不振、懒动肥胖、都可饮而化之。而纳米黄茶能更 好发挥黄茶原茶的功能,纳米黄茶更能穿入脂肪细胞,使脂肪细胞在消化酶的作用下恢复代谢功能,将脂肪化除。 纳米黄茶茶根的利用是用来按摩二扇门(无名指本节处)能使微量元素透入穴位,增强穴位磁场产生调节作用,增加脂肪代谢。

精选阅读

抹茶研究


有研究表明茶多酚能清除机体内过多的有害自由基,能够再生人体内的α--VE、VC、GSH、SOD等高效抗氧化物质,从而保护和修复抗氧化系统 ,对增强机体免疫、对防癌、防衰老都有显著效果。长喝绿茶能降低血糖、血脂、血压,从而预防心脑血管疾病。日本昭和大学的医学研究小组的在1毫升稀释至普通茶水的20分之1浓度的茶多酚溶液里放入10000个剧毒大肠杆菌0-157,五个小时后细菌全部死亡,一个都不剩。日本的妇女们喜欢在买来的成品牛奶或酸奶里加入抹茶,因为加了抹茶后保鲜期可以延长一倍。所以,日本的中小学校终年给孩子们免费提供绿茶,条件好的提供加了抹茶的绿茶,来预防肠胃道疾病。抹茶的纤维素是菠菜的52.8倍,是芹菜的28.4倍,其消食解腻、减肥健美、去除痘痘的功效,受到了当今爱美女性的青睐。

邂逅真抹茶,提倡吃茶新概念

吃茶与喝茶的成分比较 (100g含有量)------

比较点 单位 吃抹茶 喝绿茶冲泡水

钠 mg 3 3

钾 mg 2200 27

钙 mg 450 3

镁 mg 200 2

磷 mg 290 2

鉄 mg 20 2

亚铅 mg 3.2 0

铜 mg 1.3 0.01

维生素A ug 13.00 0

维生素B1 mg 0.36 0

维生素B2 mg 1.43 0.03

烟酸 mg 55 0.31

维生素B6 mg 0.46 0.01

叶酸 ug 1300 16

泛酸 mg 3.1 0.04

维生素C mg 260 6

*选自∶日本科学技术厅资源调查会编[五订日本食品标准成分]

茶医药研究的发展进程


茶的利用,最早是直接食用茶鲜叶作药用的,后来慢慢有了对茶鲜叶的初步加工和贮藏,并从单一以茶作药治病,发展到了一系列含茶中药配方,创造了无数茶疗药方。服用方法也从直接食用茶鲜叶发展到煮饮,进而到包括煮饮、研末外敷、茶枕等多种应用方式,并创造了茶疗、茶膳等一系列茶医疗和保健形式。

现代科技的介入,使人们对茶的药用价值的认识进一步深化,许多重要药用功能在现代科学技术理论体系中得到了验证,并进一步揭示了各种功效的作用机制。现在涉及茶或茶提取物的应用领域已扩展到了食品添加物、保健食品、动物饲料、日用化工、制药、化妆品、建材、纺织等领域。其中在医疗保健方面的研究最为深入,开发出了大量产品。

这漫长的茶医学发展史,按其不同的技术水平可大致分为如下3个发展阶段。

(一)随机探索阶段此为第一发展阶段。

在唐宋以前,古代人们的科技知识水平低下,探索植物对人体生理的作用一般是一个盲目的和随机的实践过程。人们在实践过程中慢慢体会到,茶具有解毒、清火、提神、消食等功效。虽然此阶段的探索是零星的和比较随机的,但毕竟为以后的研究积累了大量的感性知识。这种探索逐步由偶然走向自觉,直到中医对茶进行系统的研究并创造出大量含茶中医药方,从此便进入了茶医学自觉的和系统的研究阶段。

此发展阶段的主要成果可归纳为:①发现了茶的药用价值,并积累了大量以茶治病的经验。②茶的利用方式从直接食用鲜叶发展到将鲜叶加工成干茶贮藏,以备后用。③从吃茶治病发展到包括以治病、防病及保健为目的的经常性饮茶。

(二)中医对茶的医药功能的系统研究此为第二发展阶段。

从唐、宋时期起,到20世纪60~70年代,主要是中医对茶的医药功能进行了系统的研究。此时期茶医学的发展过程基本上与中医的发展过程同步。

此阶段,人们开始对茶的医药及保健功能进行了较为系统的和全面的探索,对前人大量实践经验进行系统的总结。对茶医药价值的开发利用从单方应用为主发展到单方、复方并用,并以复方为主,在实践中创造了数以千计的含茶中药方剂。服用方法也由单一的煮饮法发展成包括煮饮、外敷、熏灸、茶枕等多种方式,最终导致了茶疗、茶膳等茶医药文化的形成。在理论上,总结出了一系列传世经典着作,其中以唐代陆羽的《茶经》和清代李时珍的《本草纲目》最为着名。

(三)现代科技对茶医学的研究此为第三发展阶段。

茶与人类健康的关系被现代科技界所关注并进行系统研究,还只是最近30~40年的事。1970年远东地区的一些科研人员最早对茶的医疗保健功能进行系统研究,他们以绿茶为材料的实验结果证实,茶的确具有保健作用。在中国,较早开展茶叶保健功能研究的是浙江医科大学、中国农业科学院茶叶研究所等单位,他们于20世纪80年代开发出的“茶色素口服液”、由茶叶提取物制成的“升白”片剂等,开创了我国用现代科学技术系统研究茶叶医药功能的先河。

20世纪80年代以前,研究主要是对茶浸提液的疗效试验;20世纪80年代以后,较多地集中在对茶叶中茶多酚类、儿茶素、氟等成分的药理功效及其作用机制的研究。其中对茶多酚类的研究获得重大突破,研究结果明确了茶多酚类具有抗肿瘤、抗衰老等医学功能,以及它们的抗氧化、清除自由基的作用机制。茶多糖在糖尿病治疗上的作用、茶色素(包括茶黄素、茶红素、β-胡萝卜素等)对心血管疾病的疗效、茶叶中的氟对龋齿的预防和治疗作用等功能也得到了证实。

1985年以后,茶与健康关系的研究在世界各地广泛开展。研究对象从绿茶扩展到红茶、乌龙茶等;从整茶提取物发展到茶的各种内含成分,如儿茶素、茶多糖、茶氨酸等。试验方法上较多的是采用动物模型试验,也有临床试验和流行病学调查。许多更深入的基础研究,包括各种茶叶成分在人体内的代谢动力学研究、药理和生理学研究、毒性试验等,大多是最近十来年的事。

如果说茶医学发展的第二阶段是以中医理论为主指导下的研究与应用,主要采用综合的、归纳的理论方法,在阴阳五行的世界观指导下,注重整体的观点,则第三阶段的发展主要是在西医理论指导下对茶医药价值进行的研究与应用。此阶段的大多数研究成果都依赖于西医的研究方法,理论方法上主要采用分析、解剖、统计等方法。,第二阶段主要是对整茶的研究和应用,即还没有对茶的各种内含成分进行分离并分别研究其药效,而第三阶段的发展在很大程度上在于对茶的各种有效成分进行了分离,并对它们进行单独的研究,从而使我们对茶医药功能的认识推进到了化合物或分子领域的水平。

茶氨酸的研究进展


摘要 茶氨酸是茶叶的特征氨基酸。大量研究表明,茶氨酸的含量不仅对茶叶的品质有很大的影响,而且具有促进大脑功能和神经的生长、抗肿瘤、降压安神等功效。本文综述了近十余年来国内外在茶氨酸的形成、积累、测定、制备及应用方面的研究进展。

关键词 茶氨酸;形成;积累;测定;制备;应用

1 引言

至今为止人们在茶叶中已发现25种氨基酸。其中茶氨酸约占氨基酸总量的50%。大多数学者认为茶氨酸是茶叶的特征氨基酸,因为到目前为止除了在茶梅、山茶、油茶、簟等四种天然植物中检测出其微量存在外,其他植物中尚未发现。茶氨酸(theanine)是1950年日本学者酒户弥二郎首次从绿茶中分离并命名的,它属酰胺类化合物,化学命名:N乙基L谷氨酰胺,结构式:HOCOCHNH2CH2CH2CONHCH2CH3。自然存在的茶氨酸均为L型,纯品为白色针状结晶,熔点217~218℃(分解),比旋光度[α]20D=0 7°,极易溶于水,水解度呈微酸性,有焦糖香及类似味精的鲜爽味,研究证明它的含量与绿茶的品质密切相关,相关系数为0 787~0 876[1]。

2 茶叶中茶氨酸研究进展

作为茶叶的特征氨基酸,茶氨酸几乎存在于茶树的所有器官和组织中。经大量研究表明,茶氨酸在茶树的根部形成,然后向新梢积聚,因而茶树新梢中茶氨酸含量最高。茶氨酸的形成是茶树储存氮的手段之一,这是因为茶氨酸被茶氨酸水解酶水解为谷氨酸和乙胺,乙胺在胺氧化酶的作用下产生氨和乙醛,氨可作为氮源供茶树的幼龄组织生长,因此茶氨酸是茶树幼芽光合作用开始前有机碳骨架合成的起始物,而且也是茶树中多酚类物质的重要前体。茶氨酸在茶树中的积累与光照、温度和合成前体密切相关。研究发现当温度为25℃,黑暗条件下,在培养基中加入盐酸乙胺能明显增加茶氨酸的积累。1992年我国学者李荣林等对茶树新梢中茶氨酸的分布情况及其在不同季节、不同品种和不同栽培条件下含量的变化作了较全面的研究[2]。他们发现,随着茶树叶片成熟度的增加,茶氨酸的含量逐渐降低,因此茶氨酸可作为茶鲜叶嫩度的化学指标之一;茶氨酸在新梢中的含量随季节的不同存在显著的差异,其在春茶新梢中的含量是在夏茶中的4倍,是在秋茶中的7倍;环境对茶氨酸含量也有较大的影响,土壤的pH值下降,不利于茶氨酸的积累,而氨态氮的存在和遮荫环境有利于茶氨酸的积累; 茶叶制作过程不同,其茶中茶氨酸的含量也有明显变化。绿茶制造过程中由于谷氨酸的转化使茶氨酸的含量呈增加趋势;黄茶、青茶、黑茶制造过程中谷氨酸的变化不明显,茶氨酸呈减少趋势;白茶制造过程中茶氨酸变化的特点是长时间的萎凋中蛋白质分解,谷氨酸增多并向茶氨酸转化,因此茶氨酸开始表现为增加趋势直至干燥才有所减少;而红茶发酵过程茶氨酸变化复杂,有增有减,总趋势是减少。虽然人们普遍认为茶氨酸可作为评价绿茶质量的重要标志之一,但对红茶茶氨酸的含量与其品质的相关性问题有着不同的看法。

K.HelenEkborgOtt等在对17种茶的茶氨酸含量进行分析时发现, 某些红茶中茶氨酸的含量并不比绿茶和乌龙茶低,有的红茶 (如中国的云南茶)中茶氨酸的含量甚至还高于某些绿茶 [3]。赵和涛等在研究茶氨酸的生化特性时测定了我国六大茶类中茶氨酸的含量[4]发现以白茶中茶氨酸的含量最高,为30079mg/100g;其次是绿茶和黄茶,在17301~1944 7mg/100g之间;红茶相对绿茶低一点,为14616mg/100g;青茶为6274mg/100g;含量最低的是黑茶,只有711mg/100g,这可能是由于其加工过程中特有的渥堆作用导致了茶氨酸大量损失。因此也有学者认为茶氨酸的含量也可作为红茶品质的重要评价因子之一。湖南农业大学的唐和平等对9个茶树品种及红山茶、白山茶进行了氨基酸组成的分析[5],并比较了其中茶氨酸含量的差异,他们发现山茶中虽有茶氨酸存在,但含量甚微;通过对不同进化层次的茶树品种进行茶氨酸含量分析,证明茶氨酸含量随茶树进化层次的提高呈积累趋势,并以山茶中也发现茶氨酸说明茶与山茶存在一定的亲缘关系,由此支持茶树应属山茶属的观点。1997年齐贵年等比较了经蒸汽杀青、锅炒杀青和滚筒杀青的扁形特种绿茶氨基酸含量的变化[6],结果表明,不同工艺杀青对氨基酸组分含量有一定的影响,其氨基酸总量和茶氨酸含量均为蒸汽杀青>锅炒杀青>滚筒杀青,并且提出可通过工艺技术对茶叶中茶氨酸和其他氨基酸的含量进行调控。同年钟俊辉等研究了不同培养条件、不同碳源和不同环境对茶愈伤组织培养及其茶氨酸的积累的影响[7],发现激素IAA和6 BA结合作用时,以IAA2mg/L和6 BA4mg/L时对茶氨酸积累最有利;而培养基中碳源不同,愈伤组织的增长速率及其茶氨酸的含量的差异并不显著,但当用不同浓度的蔗糖作为碳源时发现,随着蔗糖浓度的增加茶氨酸的积累呈上升趋势。与其他文献相同,他们的研究结果表明25℃、黑暗条件有利于茶氨酸的积累。

3 茶氨酸的测定与制备茶氨酸的分析方法有多种,有传统的阴离子交换树脂层析法、薄层色谱法、气相色谱法[8,9]等。近十多年来随着高效液相色谱技术的迅猛发展,分析速度、灵敏度和自动化程度的不断提高,该技术越来越广泛地应用于氨基酸分析领域。因大多数氨基酸无紫外吸收和荧光发射特性,标准折射探测仪对氨基酸检测也无足够的灵敏度,所以为提高分析检测灵敏度和分离选择特性,通常将其衍生。二十世纪八十年代中期美国Waters公司率先推出了氨基酸自动分析系统及技术[10],他们采用异氰酸苯酯(PITC)作为衍生试剂,柱前衍生,反相色谱分离的原理,用紫外检测进行氨基酸分析。随后,惠普公司推出了HPAminoQuant氨基酸分析系统及技术[11],采用邻苯二甲醛(OPA)和氯甲酸芴甲酯(FMOC)作为衍生试剂,既可用紫外又可用荧光进行检测。董泗建等对几种柱前衍生的氨基酸分析法的色谱条件进行了改进[12],在降低成本的基础上进一步优化了分离效果。1994年Waters公司又推出了一套全新的氨基酸分析技术,他们采用6 氨基喹啉 N 羟基琥珀酰亚胺基 氨基甲酸酯(AQC)作为衍生试剂,以乙腈和水作为流动相,梯度洗脱,紫外或荧光检测器检测,该法简称为ACCQ TAG法。在日本学者莽也邦夫等采用高效液相色谱法测定了茶叶中茶氨酸含量之后,我国学者郭升平对用高效液相色谱测定茶叶中茶氨酸进行了较详细的研究[13],他采用WatersM344高效液相色谱仪,以PITC柱前衍生,反相C18柱分离(Waters的Pico TagTMHAA柱),柱温43℃,梯度洗脱,用M990二极管阵列检测器,在UV243nm检测。在研究中他对用乙酸乙酯提取、用80%乙醇回流3h提取和经盐酸水解等前处理的方法进行了比较,发现茶氨酸不能以酸水解方式提取,否则茶氨酸会分解成谷氨酸,而使测定结果偏低。随着近年来分析技术和分析手段的不断提高,毛细管电泳技术和液质联用技术也应用到了茶氨酸检测领域。KiehneA等报道了采用热喷雾液质联用仪分析茶叶中多酚类物质的方法[14],他们通过测定其准分子离子峰同时测定了茶叶中的儿茶素、黄酮醇糖甙、黄酮糖甙及咖啡因、可可碱和茶氨酸。AucampJP等则研究了用毛细管电泳仪同时进行儿茶素、茶氨酸、咖啡因及没食子酸、抗坏血酸分析的方法[15]。

目前,高纯度的茶氨酸主要通过细胞组培、化学合成、微生物发酵和离子交换树脂分离等方式获取。人们用14C示踪的方法早已证实了茶树中茶氨酸合成前体是谷氨酸和乙胺。一般认为当培养基中乙胺的浓度为25mM时,茶叶愈伤组织的茶氨酸的生物合成为最大值。1998年陈瑛等研究了多种激素对茶愈伤组织合成茶氨酸的影响[16],他们对生长素(IAA)、萘乙酸(NAA)、吲哚丁酸(IBA)、2,4 二氯苯氧乙酸(2,4 D)、6 苄基腺嘌呤(6 BA)、玉米素(ZT)、激动素(KT)、和三十烷醇(TA)的不同浓度、不同配比进行试验,得出了茶愈伤组织生长和茶氨酸积累的较佳培养条件。除了利用细胞组织培养茶氨酸之外,化学合成也是得到高纯度茶氨酸的有效方法[17]。采用化学合成手段制造氨基酸始于二十世纪五十年代,它具有价格低,成本低,适合工业化生产的特点。但是化学合成制造的都是DL 型消旋体,需要进行拆分才能得到L 型产品。日本学者在这方面作了大量的工作,他们采用微生物固化酶分离DL 型氨基酸取得了成功。采用微生物发酵法可直接得到L 型氨基酸,但反应时间较长,设备规模较庞大,副产物也较多,需要进一步分离精制,成本相对较高。因此建立在化学合成法和微生物发酵法基础上的酶转化法或称酶工程技术应运而生了。这种技术是应用特定酶的催化作用,使某些化合物转化成相应的L 氨基酸。HideyukiSuzuki等报道了他们把这一技术应用到茶氨酸的制备中的最新研究成果[18],他们利用从细菌中得到的谷氨酰转肽酶作催化剂,将200mM谷氨酸和1 5M乙胺在pH为10,温度为37℃的条件下,保持2小时,获得120mM茶氨酸,转化率为60%。茶氨酸作为两性物质,选择适当的pH值,用离子交换树脂分离提取也是一种有效的手段,但这方面的报道并不多见。1998年陈瑛等报道了用离子交换法提取茶氨酸的研究结果[19],他们选用国产732阳离子交换树脂,从茶愈伤组织浸提液中提取茶氨酸,并讨论了洗脱液离子强度和pH值对树脂吸附茶氨酸的影响,以及上样浓度、洗脱速度对树脂交换过程的影响。

相关文章